Back to Search

Bioinformatics, Second Edition: The Machine Learning Approach

AUTHOR Brunak, Søren; Baldi, Pierre; Brunak, Sren et al.
PUBLISHER Bradford Book (07/20/2001)
PRODUCT TYPE Hardcover (Hardcover)

Description
A guide to machine learning approaches and their application to the analysis of biological data.

An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models--and to automate the process as much as possible.

In this book Pierre Baldi and S ren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology.

This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.

Show More
Product Format
Product Details
ISBN-13: 9780262025065
ISBN-10: 026202506X
Binding: Hardback or Cased Book (Sewn)
Content Language: English
Edition Number: 0002
More Product Details
Page Count: 476
Carton Quantity: 6
Product Dimensions: 7.33 x 1.28 x 9.34 inches
Weight: 2.38 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Computers | Data Science - Neural Networks
Computers | Bioinformatics
Computers | Life Sciences - Biochemistry
Dewey Decimal: 572.801
Library of Congress Control Number: 2001030210
Descriptions, Reviews, Etc.
publisher marketing
A guide to machine learning approaches and their application to the analysis of biological data.

An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding rapidly. Bioinformatics is the development and application of computer methods for management, analysis, interpretation, and prediction, as well as for the design of experiments. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory, which is the situation in molecular biology. The goal in machine learning is to extract useful information from a body of data by building good probabilistic models--and to automate the process as much as possible.

In this book Pierre Baldi and S ren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed both at biologists and biochemists who need to understand new data-driven algorithms and at those with a primary background in physics, mathematics, statistics, or computer science who need to know more about applications in molecular biology.

This new second edition contains expanded coverage of probabilistic graphical models and of the applications of neural networks, as well as a new chapter on microarrays and gene expression. The entire text has been extensively revised.

Show More
Your Price  $69.30
Hardcover