Back to Search

Harmonic Estimation and Forecasting in Sparsely Monitored Uncertain Power Systems: Probabilistic and Machine Learning Approaches (Not yet published)

AUTHOR Zhao, Yuqi
PUBLISHER Springer (01/10/2026)
PRODUCT TYPE Hardcover (Hardcover)

Description
This book tackles the technical challenges of integrating renewable energy sources into power grids to reduce exposure to significant financial and operational risks. It does so by introducing advanced methods for harmonic estimation and forecasting in sparsely monitored and uncertain power networks, leveraging probabilistic and machine learning techniques.

With a focus on practical applications, the book introduces a Monte-Carlo-based simulation framework to address operational randomness and uncertainties, along with the development of a Norton equivalent model of wind farms for probabilistic harmonic propagation studies. The author also presents cost-effective methods for harmonic estimation in non-radial distribution networks and proposes a sequential artificial-neural-network-based approach for probabilistic harmonic forecasting in transmission networks with limited harmonic measurements. By significantly reducing the reliance on extensive power-quality-monitoring installations, these methods provide robust, accurate, and reliable harmonic data and enable more effective and informed decision-making for future power system operations.

Targeted at academic researchers, industrial engineers, and graduate students, this book matches theoretical advance with practical application. It supports the assessment of standard compliance and benchmarking, minimizes the need for power-quality-monitoring installations, accelerates the evaluation of harmonic propagation and mitigation strategies in uncertain, power-electronics-rich networks, and advances the forecasting of potential harmonic issues in future power systems.

Show More
Product Format
Product Details
ISBN-13: 9783031990472
ISBN-10: 3031990471
Binding: Hardback or Cased Book (Sewn)
Content Language: English
More Product Details
Page Count: 209
Carton Quantity: 0
Country of Origin: NL
Subject Information
BISAC Categories
Technology & Engineering | Power Resources - Electrical
Descriptions, Reviews, Etc.
jacket back

This book tackles the technical challenges of integrating renewable energy sources into power grids to reduce exposure to significant financial and operational risks. It does so by introducing advanced methods for harmonic estimation and forecasting in sparsely monitored and uncertain power networks, leveraging probabilistic and machine learning techniques.

With a focus on practical applications, the book introduces a Monte-Carlo-based simulation framework to address operational randomness and uncertainties, along with the development of a Norton equivalent model of wind farms for probabilistic harmonic propagation studies. The author also presents cost-effective methods for harmonic estimation in non-radial distribution networks and proposes a sequential artificial-neural-network-based approach for probabilistic harmonic forecasting in transmission networks with limited harmonic measurements. By significantly reducing the reliance on extensive power-quality-monitoring installations, these methods provide robust, accurate, and reliable harmonic data and enable more effective and informed decision-making for future power system operations.

Targeted at academic researchers, industrial engineers, and graduate students, this book matches theoretical advance with practical application. It supports the assessment of standard compliance and benchmarking, minimizes the need for power-quality-monitoring installations, accelerates the evaluation of harmonic propagation and mitigation strategies in uncertain, power-electronics-rich networks, and advances the forecasting of potential harmonic issues in future power systems.

Show More
publisher marketing
This book tackles the technical challenges of integrating renewable energy sources into power grids to reduce exposure to significant financial and operational risks. It does so by introducing advanced methods for harmonic estimation and forecasting in sparsely monitored and uncertain power networks, leveraging probabilistic and machine learning techniques.

With a focus on practical applications, the book introduces a Monte-Carlo-based simulation framework to address operational randomness and uncertainties, along with the development of a Norton equivalent model of wind farms for probabilistic harmonic propagation studies. The author also presents cost-effective methods for harmonic estimation in non-radial distribution networks and proposes a sequential artificial-neural-network-based approach for probabilistic harmonic forecasting in transmission networks with limited harmonic measurements. By significantly reducing the reliance on extensive power-quality-monitoring installations, these methods provide robust, accurate, and reliable harmonic data and enable more effective and informed decision-making for future power system operations.

Targeted at academic researchers, industrial engineers, and graduate students, this book matches theoretical advance with practical application. It supports the assessment of standard compliance and benchmarking, minimizes the need for power-quality-monitoring installations, accelerates the evaluation of harmonic propagation and mitigation strategies in uncertain, power-electronics-rich networks, and advances the forecasting of potential harmonic issues in future power systems.

Show More
List Price $249.99
Your Price  $247.49
Hardcover