Back to Search

Algoritmos evolutivos multiobjectivo de redes neuronais de espigões

AUTHOR Saleh, Abdulrazak Yahya
PUBLISHER Edicoes Nosso Conhecimento (02/01/2025)
PRODUCT TYPE Paperback (Paperback)

Description
As redes neuronais de estimulação (SNN) desempenham um papel essencial nos problemas de classificação. Embora existam muitos modelos de SNN, a Evolving Spiking Neural Network (ESNN) é amplamente utilizada em muitos trabalhos de investigação recentes. Os algoritmos evolutivos, principalmente a evolução diferencial (DE), têm sido utilizados para melhorar o algoritmo ESNN. No entanto, muitos problemas de otimização do mundo real incluem vários objectivos contraditórios. Neste livro, a Harmony Search (HS) e a abordagem memética foram utilizadas para melhorar o desempenho da MOO com ESNN. Consequentemente, foi aplicada a Evolução Diferencial Multi-Objetivo de Pesquisa Harmónica Memetic com Rede Neural Evolutiva (MEHSMODE-ESNN) para melhorar a estrutura da ESNN e as taxas de precisão. São utilizados conjuntos de dados padrão da aprendizagem automática da UCI para avaliar o desempenho deste modelo híbrido multiobjectivo melhorado. Os resultados experimentais provaram que a Evolução Diferencial Multi-Objetivo da Pesquisa Harmónica Memetic com Rede Neural Evolutiva (MEHSMODE-ESNN) dá melhores resultados em termos de precisão e estrutura da rede.
Show More
Product Format
Product Details
ISBN-13: 9786208557478
ISBN-10: 620855747X
Binding: Paperback or Softback (Trade Paperback (Us))
Content Language: Portuguese
More Product Details
Page Count: 60
Carton Quantity: 118
Product Dimensions: 6.00 x 0.14 x 9.00 inches
Weight: 0.21 pound(s)
Country of Origin: US
Subject Information
BISAC Categories
Computers | General
Descriptions, Reviews, Etc.
publisher marketing
As redes neuronais de estimulação (SNN) desempenham um papel essencial nos problemas de classificação. Embora existam muitos modelos de SNN, a Evolving Spiking Neural Network (ESNN) é amplamente utilizada em muitos trabalhos de investigação recentes. Os algoritmos evolutivos, principalmente a evolução diferencial (DE), têm sido utilizados para melhorar o algoritmo ESNN. No entanto, muitos problemas de otimização do mundo real incluem vários objectivos contraditórios. Neste livro, a Harmony Search (HS) e a abordagem memética foram utilizadas para melhorar o desempenho da MOO com ESNN. Consequentemente, foi aplicada a Evolução Diferencial Multi-Objetivo de Pesquisa Harmónica Memetic com Rede Neural Evolutiva (MEHSMODE-ESNN) para melhorar a estrutura da ESNN e as taxas de precisão. São utilizados conjuntos de dados padrão da aprendizagem automática da UCI para avaliar o desempenho deste modelo híbrido multiobjectivo melhorado. Os resultados experimentais provaram que a Evolução Diferencial Multi-Objetivo da Pesquisa Harmónica Memetic com Rede Neural Evolutiva (MEHSMODE-ESNN) dá melhores resultados em termos de precisão e estrutura da rede.
Show More
List Price $37.00
Your Price  $36.63
Paperback